mirror of
https://github.com/ae-utbm/sith.git
synced 2025-06-26 13:15:18 +00:00
Optimize galaxy generation
En réorganisant les requêtes à la db, on diminue par 100 le temps d'exécution de la commande `rule_galaxy` (~6h => ~2min)
This commit is contained in:
parent
06090e0cd9
commit
b812d7bcdd
337
galaxy/models.py
337
galaxy/models.py
@ -23,20 +23,21 @@
|
||||
|
||||
from __future__ import annotations
|
||||
|
||||
import itertools
|
||||
import logging
|
||||
import math
|
||||
import time
|
||||
from collections import defaultdict
|
||||
from typing import NamedTuple, TypedDict
|
||||
|
||||
from django.db import models
|
||||
from django.db.models import Case, Count, F, Q, Value, When
|
||||
from django.db.models.functions import Concat
|
||||
from django.db.models import Count, F, Q, QuerySet
|
||||
from django.utils.timezone import localdate
|
||||
from django.utils.translation import gettext_lazy as _
|
||||
|
||||
from club.models import Club
|
||||
from club.models import Membership
|
||||
from core.models import User
|
||||
from sas.models import Picture
|
||||
from sas.models import PeoplePictureRelation, Picture
|
||||
|
||||
|
||||
class GalaxyStar(models.Model):
|
||||
@ -114,18 +115,9 @@ class GalaxyLane(models.Model):
|
||||
default=0,
|
||||
help_text=_("Distance separating star1 and star2"),
|
||||
)
|
||||
family = models.PositiveIntegerField(
|
||||
_("family score"),
|
||||
default=0,
|
||||
)
|
||||
pictures = models.PositiveIntegerField(
|
||||
_("pictures score"),
|
||||
default=0,
|
||||
)
|
||||
clubs = models.PositiveIntegerField(
|
||||
_("clubs score"),
|
||||
default=0,
|
||||
)
|
||||
family = models.PositiveIntegerField(_("family score"), default=0)
|
||||
pictures = models.PositiveIntegerField(_("pictures score"), default=0)
|
||||
clubs = models.PositiveIntegerField(_("clubs score"), default=0)
|
||||
|
||||
def __str__(self):
|
||||
return f"{self.star1} -> {self.star2} ({self.distance})"
|
||||
@ -174,6 +166,7 @@ class Galaxy(models.Model):
|
||||
logger = logging.getLogger("main")
|
||||
|
||||
GALAXY_SCALE_FACTOR = 2_000
|
||||
DEFAULT_PICTURE_COUNT_THRESHOLD = 10
|
||||
FAMILY_LINK_POINTS = 366 # Equivalent to a leap year together in a club, because.
|
||||
PICTURE_POINTS = 2 # Equivalent to two days as random members of a club.
|
||||
CLUBS_POINTS = 1 # One day together as random members in a club is one point.
|
||||
@ -187,15 +180,13 @@ class Galaxy(models.Model):
|
||||
stars_count = self.stars.count()
|
||||
s = f"GLX-ID{self.pk}-SC{stars_count}-"
|
||||
if self.state is None:
|
||||
s += "CHS" # CHAOS
|
||||
s += "CHAOS"
|
||||
else:
|
||||
s += "RLD" # RULED
|
||||
s += "RULED"
|
||||
return s
|
||||
|
||||
@classmethod
|
||||
def get_current_galaxy(
|
||||
cls,
|
||||
) -> Galaxy: # __future__.annotations is required for this
|
||||
def get_current_galaxy(cls) -> Galaxy:
|
||||
return Galaxy.objects.filter(state__isnull=False).last()
|
||||
|
||||
###################
|
||||
@ -203,7 +194,18 @@ class Galaxy(models.Model):
|
||||
###################
|
||||
|
||||
@classmethod
|
||||
def compute_user_score(cls, user: User) -> int:
|
||||
def get_rulable_users(
|
||||
cls, picture_count_threshold: int = DEFAULT_PICTURE_COUNT_THRESHOLD
|
||||
) -> QuerySet[User]:
|
||||
return (
|
||||
User.objects.exclude(subscriptions=None)
|
||||
.annotate(pictures_count=Count("pictures"))
|
||||
.filter(pictures_count__gt=picture_count_threshold)
|
||||
.distinct()
|
||||
)
|
||||
|
||||
@classmethod
|
||||
def compute_individual_scores(cls) -> dict[int, int]:
|
||||
"""Compute an individual score for each citizen.
|
||||
|
||||
It will later be used by the graph algorithm to push
|
||||
@ -211,87 +213,50 @@ class Galaxy(models.Model):
|
||||
|
||||
Idea: This could be added to the computation:
|
||||
|
||||
- Forum posts
|
||||
- Picture count
|
||||
- Counter consumption
|
||||
- Barman time
|
||||
- ...
|
||||
"""
|
||||
user_score = 1
|
||||
user_score += cls.query_user_score(user)
|
||||
|
||||
users = (
|
||||
User.objects.annotate(
|
||||
score=(
|
||||
Count("godchildren", distinct=True) * cls.FAMILY_LINK_POINTS
|
||||
+ Count("godfathers", distinct=True) * cls.FAMILY_LINK_POINTS
|
||||
+ Count("pictures", distinct=True) * cls.PICTURE_POINTS
|
||||
+ Count("memberships", distinct=True) * cls.CLUBS_POINTS
|
||||
)
|
||||
)
|
||||
.filter(score__gt=0)
|
||||
.values("id", "score")
|
||||
)
|
||||
# TODO:
|
||||
# Scale that value with some magic number to accommodate to typical data
|
||||
# Really active galaxy citizen after 5 years typically have a score of about XXX
|
||||
# Citizen that were seen regularly without taking much part in organizations typically have a score of about XXX
|
||||
# Citizen that only went to a few events typically score about XXX
|
||||
user_score = int(math.log2(user_score))
|
||||
|
||||
return user_score
|
||||
|
||||
@classmethod
|
||||
def query_user_score(cls, user: User) -> int:
|
||||
"""Get the individual score of the given user in the galaxy."""
|
||||
score_query = (
|
||||
User.objects.filter(id=user.id)
|
||||
.annotate(
|
||||
godchildren_count=Count("godchildren", distinct=True)
|
||||
* cls.FAMILY_LINK_POINTS,
|
||||
godfathers_count=Count("godfathers", distinct=True)
|
||||
* cls.FAMILY_LINK_POINTS,
|
||||
pictures_score=Count("pictures", distinct=True) * cls.PICTURE_POINTS,
|
||||
clubs_score=Count("memberships", distinct=True) * cls.CLUBS_POINTS,
|
||||
)
|
||||
.aggregate(
|
||||
score=models.Sum(
|
||||
F("godchildren_count")
|
||||
+ F("godfathers_count")
|
||||
+ F("pictures_score")
|
||||
+ F("clubs_score")
|
||||
)
|
||||
)
|
||||
)
|
||||
return score_query.get("score")
|
||||
res = {u["id"]: int(math.log2(u["score"] + 1)) for u in users}
|
||||
return res
|
||||
|
||||
####################
|
||||
# Inter-user score #
|
||||
####################
|
||||
|
||||
@classmethod
|
||||
def compute_users_score(cls, user1: User, user2: User) -> RelationScore:
|
||||
"""Compute the relationship scores of the two given users.
|
||||
|
||||
The computation is done with the following fields :
|
||||
|
||||
- family: if they have some godfather/godchild relation
|
||||
- pictures: in how many pictures are both tagged
|
||||
- clubs: during how many days they were members of the same clubs
|
||||
"""
|
||||
family = cls.compute_users_family_score(user1, user2)
|
||||
pictures = cls.compute_users_pictures_score(user1, user2)
|
||||
clubs = cls.compute_users_clubs_score(user1, user2)
|
||||
return RelationScore(family=family, pictures=pictures, clubs=clubs)
|
||||
|
||||
@classmethod
|
||||
def compute_users_family_score(cls, user1: User, user2: User) -> int:
|
||||
def compute_user_family_score(cls, user: User) -> defaultdict[int, int]:
|
||||
"""Compute the family score of the relation between the given users.
|
||||
|
||||
This takes into account mutual godfathers.
|
||||
|
||||
Returns:
|
||||
366 if user1 is the godfather of user2 (or vice versa) else 0
|
||||
"""
|
||||
link_count = User.objects.filter(
|
||||
Q(id=user1.id, godfathers=user2) | Q(id=user2.id, godfathers=user1)
|
||||
).count()
|
||||
if link_count > 0:
|
||||
cls.logger.debug(
|
||||
f"\t\t- '{user1}' and '{user2}' have {link_count} direct family link"
|
||||
)
|
||||
return link_count * cls.FAMILY_LINK_POINTS
|
||||
godchildren = User.objects.filter(godchildren=user).values_list("id", flat=True)
|
||||
godfathers = User.objects.filter(godfathers=user).values_list("id", flat=True)
|
||||
result = defaultdict(int)
|
||||
for parent in itertools.chain(godchildren, godfathers):
|
||||
result[parent] += cls.FAMILY_LINK_POINTS
|
||||
return result
|
||||
|
||||
@classmethod
|
||||
def compute_users_pictures_score(cls, user1: User, user2: User) -> int:
|
||||
def compute_user_pictures_score(cls, user: User) -> defaultdict[int, int]:
|
||||
"""Compute the pictures score of the relation between the given users.
|
||||
|
||||
The pictures score is obtained by counting the number
|
||||
@ -301,19 +266,19 @@ class Galaxy(models.Model):
|
||||
Returns:
|
||||
The number of pictures both users have in common, times 2
|
||||
"""
|
||||
picture_count = (
|
||||
Picture.objects.filter(people__user__in=(user1,))
|
||||
.filter(people__user__in=(user2,))
|
||||
.count()
|
||||
common_photos = (
|
||||
PeoplePictureRelation.objects.filter(
|
||||
picture__in=Picture.objects.filter(people__user=user)
|
||||
)
|
||||
if picture_count:
|
||||
cls.logger.debug(
|
||||
f"\t\t- '{user1}' was pictured with '{user2}' {picture_count} times"
|
||||
.values("user")
|
||||
.annotate(count=Count("user"))
|
||||
)
|
||||
return defaultdict(
|
||||
int, {p["user"]: p["count"] * cls.PICTURE_POINTS for p in common_photos}
|
||||
)
|
||||
return picture_count * cls.PICTURE_POINTS
|
||||
|
||||
@classmethod
|
||||
def compute_users_clubs_score(cls, user1: User, user2: User) -> int:
|
||||
def compute_user_clubs_score(cls, user: User) -> defaultdict[int, int]:
|
||||
"""Compute the clubs score of the relation between the given users.
|
||||
|
||||
The club score is obtained by counting the number of days
|
||||
@ -324,54 +289,36 @@ class Galaxy(models.Model):
|
||||
(two years) and user2 was a member of the same club from 01/01/2021 to
|
||||
31/12/2022 (also two years, but with an offset of one year), then their
|
||||
club score is 365.
|
||||
|
||||
Returns:
|
||||
the number of days during which both users were in the same club
|
||||
"""
|
||||
common_clubs = Club.objects.filter(members__in=user1.memberships.all()).filter(
|
||||
members__in=user2.memberships.all()
|
||||
memberships = user.memberships.only("start_date", "end_date", "club_id")
|
||||
result = defaultdict(int)
|
||||
now = localdate()
|
||||
for membership in memberships:
|
||||
# This is a N+1 query, but 92% of galaxy users have less than 10 memberships.
|
||||
# Only 5 users have more than 30 memberships.
|
||||
common_memberships = (
|
||||
Membership.objects.exclude(user=user)
|
||||
.filter(
|
||||
Q( # start2 <= start1 <= end2
|
||||
start_date__lte=membership.start_date,
|
||||
end_date__gte=membership.start_date,
|
||||
)
|
||||
user1_memberships = user1.memberships.filter(club__in=common_clubs)
|
||||
user2_memberships = user2.memberships.filter(club__in=common_clubs)
|
||||
|
||||
score = 0
|
||||
for user1_membership in user1_memberships:
|
||||
if user1_membership.end_date is None:
|
||||
# user1_membership.save() is not called in this function, hence this is safe
|
||||
user1_membership.end_date = localdate()
|
||||
query = Q( # start2 <= start1 <= end2
|
||||
start_date__lte=user1_membership.start_date,
|
||||
end_date__gte=user1_membership.start_date,
|
||||
| Q( # start2 <= start1 <= now
|
||||
start_date__lte=membership.start_date, end_date=None
|
||||
)
|
||||
query |= Q( # start2 <= start1 <= now
|
||||
start_date__lte=user1_membership.start_date, end_date=None
|
||||
| Q( # start1 <= start2 <= end2
|
||||
start_date__gte=membership.start_date,
|
||||
start_date__lte=membership.end_date or now,
|
||||
),
|
||||
club_id=membership.club_id,
|
||||
)
|
||||
query |= Q( # start1 <= start2 <= end2
|
||||
start_date__gte=user1_membership.start_date,
|
||||
start_date__lte=user1_membership.end_date,
|
||||
.only("start_date", "end_date", "user_id")
|
||||
)
|
||||
for user2_membership in user2_memberships.filter(
|
||||
query, club=user1_membership.club
|
||||
):
|
||||
if user2_membership.end_date is None:
|
||||
user2_membership.end_date = localdate()
|
||||
latest_start = max(
|
||||
user1_membership.start_date, user2_membership.start_date
|
||||
)
|
||||
earliest_end = min(user1_membership.end_date, user2_membership.end_date)
|
||||
cls.logger.debug(
|
||||
"\t\t- '%s' was with '%s' in %s starting on %s until %s (%s days)"
|
||||
% (
|
||||
user1,
|
||||
user2,
|
||||
user2_membership.club,
|
||||
latest_start,
|
||||
earliest_end,
|
||||
(earliest_end - latest_start).days,
|
||||
)
|
||||
)
|
||||
score += cls.CLUBS_POINTS * (earliest_end - latest_start).days
|
||||
return score
|
||||
for other in common_memberships:
|
||||
start = max(membership.start_date, other.start_date)
|
||||
end = min(membership.end_date or now, other.end_date or now)
|
||||
result[other.user_id] += (end - start).days * cls.CLUBS_POINTS
|
||||
return result
|
||||
|
||||
###################
|
||||
# Rule the galaxy #
|
||||
@ -406,7 +353,9 @@ class Galaxy(models.Model):
|
||||
cls.logger.debug(f"\t\t> Scaled distance: {value}")
|
||||
return int(value)
|
||||
|
||||
def rule(self, picture_count_threshold=10) -> None:
|
||||
def rule(
|
||||
self, picture_count_threshold: int = DEFAULT_PICTURE_COUNT_THRESHOLD
|
||||
) -> None:
|
||||
"""Main function of the Galaxy.
|
||||
|
||||
Iterate over all the rulable users to promote them to citizens.
|
||||
@ -427,41 +376,30 @@ class Galaxy(models.Model):
|
||||
"""
|
||||
total_time = time.time()
|
||||
self.logger.info("Listing rulable citizen.")
|
||||
rulable_users = (
|
||||
User.objects.filter(subscriptions__isnull=False)
|
||||
.annotate(pictures_count=Count("pictures"))
|
||||
.filter(pictures_count__gt=picture_count_threshold)
|
||||
.distinct()
|
||||
)
|
||||
|
||||
# force fetch of the whole query to make sure there won't
|
||||
# be any more db hits
|
||||
# this is memory expensive but prevents a lot of db hits, therefore
|
||||
# is far more time efficient
|
||||
|
||||
rulable_users = list(rulable_users)
|
||||
rulable_users = list(self.get_rulable_users(picture_count_threshold))
|
||||
rulable_users_count = len(rulable_users)
|
||||
user1_count = 0
|
||||
self.logger.info(
|
||||
f"{rulable_users_count} citizen have been listed. Starting to rule."
|
||||
)
|
||||
|
||||
stars = []
|
||||
self.logger.info("Creating stars for all citizen")
|
||||
for user in rulable_users:
|
||||
star = GalaxyStar(
|
||||
owner=user, galaxy=self, mass=self.compute_user_score(user)
|
||||
individual_scores = self.compute_individual_scores()
|
||||
GalaxyStar.objects.bulk_create(
|
||||
[
|
||||
GalaxyStar(owner=user, galaxy=self, mass=individual_scores[user.id])
|
||||
for user in rulable_users
|
||||
]
|
||||
)
|
||||
stars.append(star)
|
||||
GalaxyStar.objects.bulk_create(stars)
|
||||
|
||||
stars = {}
|
||||
for star in GalaxyStar.objects.filter(galaxy=self):
|
||||
stars[star.owner.id] = star
|
||||
stars = {star.owner_id: star for star in self.stars.all()}
|
||||
|
||||
self.logger.info("Creating lanes between stars")
|
||||
# Display current speed every $speed_count_frequency users
|
||||
speed_count_frequency = max(rulable_users_count // 10, 1) # ten time at most
|
||||
global_avg_speed_accumulator = 0
|
||||
global_avg_speed_count = 0
|
||||
t_global_start = time.time()
|
||||
@ -472,20 +410,19 @@ class Galaxy(models.Model):
|
||||
|
||||
star1 = stars[user1.id]
|
||||
|
||||
user_avg_speed = 0
|
||||
user_avg_speed_count = 0
|
||||
|
||||
tstart = time.time()
|
||||
lanes = []
|
||||
for user2_count, user2 in enumerate(rulable_users, start=1):
|
||||
self.logger.debug("")
|
||||
self.logger.debug(
|
||||
f"\t> Examining '{user1}' ({user1_count}/{rulable_users_count}) with '{user2}' ({user2_count}/{rulable_users_count2})"
|
||||
)
|
||||
family_scores = self.compute_user_family_score(user1)
|
||||
picture_scores = self.compute_user_pictures_score(user1)
|
||||
club_scores = self.compute_user_clubs_score(user1)
|
||||
|
||||
for user2 in rulable_users:
|
||||
star2 = stars[user2.id]
|
||||
|
||||
score = Galaxy.compute_users_score(user1, user2)
|
||||
score = RelationScore(
|
||||
family=family_scores.get(user2.id, 0),
|
||||
pictures=picture_scores.get(user2.id, 0),
|
||||
clubs=club_scores.get(user2.id, 0),
|
||||
)
|
||||
distance = self.scale_distance(sum(score))
|
||||
if distance < 30: # TODO: this needs tuning with real-world data
|
||||
lanes.append(
|
||||
@ -498,22 +435,8 @@ class Galaxy(models.Model):
|
||||
clubs=score.clubs,
|
||||
)
|
||||
)
|
||||
|
||||
if user2_count % speed_count_frequency == 0:
|
||||
tend = time.time()
|
||||
delta = tend - tstart
|
||||
speed = float(speed_count_frequency) / delta
|
||||
user_avg_speed += speed
|
||||
user_avg_speed_count += 1
|
||||
self.logger.debug(
|
||||
f"\tSpeed: {speed:.2f} users per second (time for last {speed_count_frequency} citizens: {delta:.2f} second)"
|
||||
)
|
||||
tstart = time.time()
|
||||
|
||||
GalaxyLane.objects.bulk_create(lanes)
|
||||
|
||||
self.logger.info("")
|
||||
|
||||
t_global_end = time.time()
|
||||
global_delta = t_global_end - t_global_start
|
||||
speed = 1.0 / global_delta
|
||||
@ -521,19 +444,17 @@ class Galaxy(models.Model):
|
||||
global_avg_speed_count += 1
|
||||
global_avg_speed = global_avg_speed_accumulator / global_avg_speed_count
|
||||
|
||||
if user1_count % 50 == 0:
|
||||
self.logger.info("")
|
||||
self.logger.info(f" Ruling of {self} ".center(60, "#"))
|
||||
self.logger.info(
|
||||
f"Progression: {user1_count}/{rulable_users_count} citizen -- {rulable_users_count - user1_count} remaining"
|
||||
f"Progression: {user1_count}/{rulable_users_count} "
|
||||
f"citizen -- {rulable_users_count - user1_count} remaining"
|
||||
)
|
||||
self.logger.info(f"Speed: {60.0 * global_avg_speed:.2f} citizen per minute")
|
||||
|
||||
# We can divide the computed ETA by 2 because each loop, there is one citizen less to check, and maths tell
|
||||
# us that this averages to a division by two
|
||||
eta = rulable_users_count2 / global_avg_speed / 2
|
||||
eta_hours = int(eta // 3600)
|
||||
eta_minutes = int(eta // 60 % 60)
|
||||
self.logger.info(f"Speed: {global_avg_speed:.2f} citizen per second")
|
||||
eta = rulable_users_count2 // global_avg_speed
|
||||
self.logger.info(
|
||||
f"ETA: {eta_hours} hours {eta_minutes} minutes ({eta / 3600 / 24:.2f} days)"
|
||||
f"ETA: {int(eta // 60 % 60)} minutes {int(eta % 60)} seconds"
|
||||
)
|
||||
self.logger.info("#" * 60)
|
||||
t_global_start = time.time()
|
||||
@ -556,11 +477,10 @@ class Galaxy(models.Model):
|
||||
Galaxy.objects.filter(pk__in=old_galaxies_pks).delete()
|
||||
|
||||
total_time = time.time() - total_time
|
||||
total_time_hours = int(total_time // 3600)
|
||||
total_time_minutes = int(total_time // 60 % 60)
|
||||
total_time_seconds = int(total_time % 60)
|
||||
self.logger.info(
|
||||
f"{self} ruled in {total_time:.2f} seconds ({total_time_hours} hours, {total_time_minutes} minutes, {total_time_seconds} seconds)"
|
||||
f"{self} ruled in {total_time_minutes} minutes, {total_time_seconds} seconds"
|
||||
)
|
||||
|
||||
def make_state(self) -> None:
|
||||
@ -568,58 +488,33 @@ class Galaxy(models.Model):
|
||||
self.logger.info(
|
||||
"Caching current Galaxy state for a quicker display of the Empire's power."
|
||||
)
|
||||
|
||||
without_nickname = Concat(
|
||||
F("owner__first_name"), Value(" "), F("owner__last_name")
|
||||
)
|
||||
with_nickname = Concat(
|
||||
F("owner__first_name"),
|
||||
Value(" "),
|
||||
F("owner__last_name"),
|
||||
Value(" ("),
|
||||
F("owner__nick_name"),
|
||||
Value(")"),
|
||||
)
|
||||
stars = (
|
||||
GalaxyStar.objects.filter(galaxy=self)
|
||||
.order_by(
|
||||
"owner"
|
||||
) # This helps determinism for the tests and doesn't cost much
|
||||
.annotate(
|
||||
owner_name=Case(
|
||||
When(owner__nick_name=None, then=without_nickname),
|
||||
default=with_nickname,
|
||||
)
|
||||
)
|
||||
.order_by("owner_id")
|
||||
.select_related("owner")
|
||||
)
|
||||
lanes = (
|
||||
GalaxyLane.objects.filter(star1__galaxy=self)
|
||||
.order_by(
|
||||
"star1"
|
||||
) # This helps determinism for the tests and doesn't cost much
|
||||
.order_by("star1")
|
||||
.annotate(
|
||||
star1_owner=F("star1__owner__id"),
|
||||
star2_owner=F("star2__owner__id"),
|
||||
star1_owner=F("star1__owner_id"), star2_owner=F("star2__owner_id")
|
||||
)
|
||||
)
|
||||
json = GalaxyDict(
|
||||
nodes=[
|
||||
StarDict(
|
||||
id=star.owner_id,
|
||||
name=star.owner_name,
|
||||
mass=star.mass,
|
||||
id=star.owner_id, name=star.owner.get_display_name(), mass=star.mass
|
||||
)
|
||||
for star in stars
|
||||
],
|
||||
links=[],
|
||||
)
|
||||
for path in lanes:
|
||||
json["links"].append(
|
||||
links=[
|
||||
{
|
||||
"source": path.star1_owner,
|
||||
"target": path.star2_owner,
|
||||
"value": path.distance,
|
||||
}
|
||||
for path in lanes
|
||||
],
|
||||
)
|
||||
self.state = json
|
||||
self.save()
|
||||
|
@ -33,7 +33,7 @@ from core.models import User
|
||||
from galaxy.models import Galaxy
|
||||
|
||||
|
||||
@pytest.mark.skip(reason="Galaxy is disabled for now")
|
||||
# @pytest.mark.skip(reason="Galaxy is disabled for now")
|
||||
class TestGalaxyModel(TestCase):
|
||||
@classmethod
|
||||
def setUpTestData(cls):
|
||||
@ -48,15 +48,19 @@ class TestGalaxyModel(TestCase):
|
||||
|
||||
def test_user_self_score(self):
|
||||
"""Test that individual user scores are correct."""
|
||||
with self.assertNumQueries(8):
|
||||
assert Galaxy.compute_user_score(self.root) == 9
|
||||
assert Galaxy.compute_user_score(self.skia) == 10
|
||||
assert Galaxy.compute_user_score(self.sli) == 8
|
||||
assert Galaxy.compute_user_score(self.krophil) == 2
|
||||
assert Galaxy.compute_user_score(self.richard) == 10
|
||||
assert Galaxy.compute_user_score(self.subscriber) == 8
|
||||
assert Galaxy.compute_user_score(self.public) == 8
|
||||
assert Galaxy.compute_user_score(self.com) == 1
|
||||
with self.assertNumQueries(1):
|
||||
scores = Galaxy.compute_individual_scores()
|
||||
expected = {
|
||||
self.root.id: 9,
|
||||
self.skia.id: 10,
|
||||
self.sli.id: 8,
|
||||
self.krophil.id: 2,
|
||||
self.richard.id: 10,
|
||||
self.subscriber.id: 8,
|
||||
self.public.id: 8,
|
||||
self.com.id: 1,
|
||||
}
|
||||
assert scores.items() >= expected.items()
|
||||
|
||||
def test_users_score(self):
|
||||
"""Test on the default dataset generated by the `populate` command
|
||||
@ -118,17 +122,23 @@ class TestGalaxyModel(TestCase):
|
||||
self.com,
|
||||
]
|
||||
|
||||
with self.assertNumQueries(100):
|
||||
with self.assertNumQueries(44):
|
||||
while len(users) > 0:
|
||||
user1 = users.pop(0)
|
||||
family_scores = Galaxy.compute_user_family_score(user1)
|
||||
picture_scores = Galaxy.compute_user_pictures_score(user1)
|
||||
club_scores = Galaxy.compute_user_clubs_score(user1)
|
||||
for user2 in users:
|
||||
score = Galaxy.compute_users_score(user1, user2)
|
||||
u1 = computed_scores.get(user1.username, {})
|
||||
u1[user2.username] = {
|
||||
"score": sum(score),
|
||||
"family": score.family,
|
||||
"pictures": score.pictures,
|
||||
"clubs": score.clubs,
|
||||
"score": (
|
||||
family_scores[user2.id]
|
||||
+ picture_scores[user2.id]
|
||||
+ club_scores[user2.id]
|
||||
),
|
||||
"family": family_scores[user2.id],
|
||||
"pictures": picture_scores[user2.id],
|
||||
"clubs": club_scores[user2.id],
|
||||
}
|
||||
computed_scores[user1.username] = u1
|
||||
|
||||
@ -140,12 +150,12 @@ class TestGalaxyModel(TestCase):
|
||||
that the number of queries to rule the galaxy is stable.
|
||||
"""
|
||||
galaxy = Galaxy.objects.create()
|
||||
with self.assertNumQueries(58):
|
||||
with self.assertNumQueries(39):
|
||||
galaxy.rule(0) # We want everybody here
|
||||
|
||||
|
||||
@pytest.mark.slow
|
||||
@pytest.mark.skip(reason="Galaxy is disabled for now")
|
||||
# @pytest.mark.skip(reason="Galaxy is disabled for now")
|
||||
class TestGalaxyView(TestCase):
|
||||
@classmethod
|
||||
def setUpTestData(cls):
|
||||
|
Loading…
x
Reference in New Issue
Block a user