1
0
mirror of https://gitlab.com/klmp200/LO27.git synced 2024-11-16 11:53:20 +00:00
LO27/report.md
2017-01-01 23:21:27 +01:00

322 lines
7.7 KiB
Markdown

% Cellular Automaton LO27
% Bartuccio Antoine \cr Porée De Ridder Jean
% Autumn 2016
\newpage
# Introduction
The goal of this project is to provide a library containing a new abstract data type called **Matrix** with associated function to manipulate them. The final program have to enable a user to test the library in an interactive and practical way.
Since we decided to not store false value \footnote{cellElement does not contains values anymore, their existence is their value}in our matrix and to not store the colElement and rowElement \footnote{they are unified and renamed as listElement}that are empty, we decided not to worry too much about performances and we encapsulated all access to stored data in the Matrix structure to avoid too much complexity and allow more modularity, readability and re-usability. We created high level tools to manipulate our matrix and used it all along the project.
For compilation we didn't used the **-ansi** flag since we had to deal with both clang and gcc for compilation and clang didn't accept this flag. Instead, we used the **-std=c89** flag witch contains the same rules but is accepted on both softwares. Compiling with **-ansi** still works.
We decided to create two different library. One for the graphical interface (which require SDL2) and the other with the Matrix data type) so this way you may just have to compile one lib if you don't need the gui.
# Description of abstract data types
Every function and data type are described in the documentation given with the project. This documentation is generated with doxygen.
# Algorithmic
The most interesting function are *getCellValue* and *setCellValue*. Those are the one we rely on the most. They are our way of dealing with our complex data structure allowing us to avoid to store false values. They are the functions that need the more computational power on the long run but are really useful due to their level of abstraction and their high level.
*getCellValue* is a simple function based on *findMatrixElem* :
```C
getCellValue(matrix:Matrix, ColPos:integer , RowPos:integer ) : bool
BEGIN
if ( colCount(matrix) <= ColPos OR rowCount(matrix) <= RowPos)
getCellValue <- ERROR
endif
if (findMatrixElem( matrix , ColPos , RowPos ) == NULL)
getCellValue <- false
endif
getCellValue <- true
END
findMatrixElem( matrix:Matrix , ColPos:integer, RowPos:integer ) : *cellElement
BEGIN
Row:ListElement <- NULL
elem:*cellElement <- NULL
Row <- getElementPos(rows(matrix),RowPos)
if (Row == NULL)
findMatrixElem <- NULL
endif
elem <- data(Row)
while (elem != NULL AND colIndex(elem) != ColPos)
elem <- nextCol(elem)
endwhile
findMatrixElem <- elem;
END
```
*setCellValue* is a simple function based on *createMatrixElem* and *deleteMatrixElement* :
```C
setCellValue(matrix:Matrix, ColPos:integer, RowPos:integer,value:bool):bool
BEGIN
if (value == true)
setCellValue <- createMatrixElem(matrix,ColPos,RowPos)
else
if ( deleteMatrixElem(matrix,ColPos,RowPos) >= 0 )
setCellValue <- true
else
setCellValue <- false
endif
endif
END
createMatrixElem( matrix:Matrix, ColPos:integer, RowPos:integer):bool
Row:*ListElement <-NULL
Col:*Listelemnt <- NULL
error:integer = 0
elem: *cellElement <- NULL
tmp: *cellElement<- NULL
if (colCount(matrix) <= ColPos OR rowCount(matrix) <= RowPos )
createMatrixElem <- ERROR
endif
elem <- CreateCellElem()
SetPositionIndex(elem,ColPos,RowPos)
Row <- getElementPos(rows(matrix),RowPos)
if (Row != NULL AND Row->data != NULL)
if (colIndex(data(Row)) == ColPos)
error ++
else
if (colIndex(data(Row)) > ColPos)
nextCol(elem) <- data(Row)
data(Row) <- elem
endif
else
tmp <- data(Row)
while ( nextCol(tmp) != NULL AND nextCol(colIndex(tmp)) < ColPos) do
tmp <- nextCol(tmp)
endwhile
if ( nextCol(tmp) == NULL OR colIndex(nextCol(tmp)) > ColPos)
nextCol(elem) <- nextCol(tmp)
nextCol(tmp) <- elem
else
error ++
endif
endif
else
push(rows(matrix),elem)
pos(tail(rows(matrix))) <- RowPos
endif
Col <- getElementPos(cols(matrix),ColPos)
if (Col != NULL AND data(Col) != NULL)
if (rowIndex(data(Col)) == RowPos)
error ++
else
if (rowIndex(data(Col)) > RowPos)
nextRow(elem) <- data(Col)
data(Col) <- elem
endif
else
tmp <- data(Col)
while (nextRow(tmp) != NULL AND rowIndex(nextRow(tmp)) < RowPos) do
tmp = nextRow(tmp)
endwhile
if (nextRow(tmp) == NULL OR rowIndex(nextRow(tmp)) > RowPos)
nexRow(elem) <- nextRow(tmp)
newRow(tmp) <- elem
else
error ++
endif
endif
else
push(cols(matrix),elem)
pos(tail(cols(matrix))) = ColPos;
endif
if (error != 0)
FreeCellElement(elem)
createMatrixElem <- true
else
createMatrixElem <- false
endif
END
deleteMatrixElem(matrix:Matrix,ColPos:integer, RowPos:integer ):integer
BEGIN
elem : *cellElement <- NULL
tmp : *cellElement <- NULL
Row : *ListElement <- NULL
Col : *ListElement <- NULL
elem <- findMatrixElem(matrix,ColPos,RowPos)
if (elem == NULL)
deleteMatrixElem <- 0
endif
Row <- getElementPos(rows(matrix),RowPos)
if (Row == NULL)
deleteMatrixElem <- -1
endif
if (Row->data == NULL)
removeElementPos(rows(matrix),RowPos)
deleteMatrixElem <- -1
endif
if (colIndex(data(Row)) == ColPos)
data(Row) <- nextCol(elem)
else
tmp <- data(Row)
while (nextCol(tmp) != NULL AND nextCol(tmp) != elem) do
tmp <- nextCol(tmp)
endwhile
if (tmp->nextCol != NULL)
nextCol(tmp) <- nextCol(elem)
endif
endif
if (data(Row) == NULL){
removeElementPos(rows(matrix),RowPos)
}
Col = getElementPos(cols(matrix),ColPos)
if (Col == NULL)
deleteMatrixElem <- -2
endif
if (Col->data == NULL){
removeElementPos(cols(matrix),ColPos)
deleteMatrixElem <- -1;
endif
if (rowIndex(data(Col)) == RowPos)
data(Col) <- nextRow(elem)
else
tmp <- data(Col)
while (nextRow(tmp) != NULL AND nextRow(tmp) != elem) do
tmp <- nextRow(tmp)
endwhile
if (nextRow(tmp) != NULL)
nextRow(tmp) <- nextRow(elem)
endif
endif
if (data(Col) == NULL)
removeElementPos(cols(matrix),ColPos)
endif
FreeCellElement(elem)
deleteMatrixElem <- 1
END
```
Functions *andColSequenceOnMatrix* and *orColSequenceOnMatrix* are implemented with *colSequenceOnMatrix* and are really not interesting so we're gonna provide the algorithm of the last one :
```C
```
This is the same thing for *andRowSequenceOnMatrix* and *orRowSequenceOnMatrix* :
```C
colSequenceOnMatrix(m:Matrix, operator:(function(bool, bool):bool)): Matrix
BEGIN
a:integer
b:integer
i:integer
j:integer
newM:Matrix <- createMatrix()
rowCount(newM) <- rowCount(m)
if (colCount(m) <= 1) then
colCount(newM) <- 0
colSequenceOnMatrix <- newM
endif
colCount(newM) <- colCount(m) - 1
for i from 0 to colCount(m) - 2 do
for j from 0 to rowCount(m) - 2 do
a <- getCellValue(m, i, j)
b <- getCellValue(m, i + 1, j)
if operator(a, b) then
setCellValue(newM, i, j, true)
endif
endfor
endfor
colSequenceOnMatrix <- newM;
END
```
Here are the algorithm of the function *applyRules* and all the one related to it :
```C
applyRules ( matrix:Matrix, Rules:integer, N:integer):Matrix
BEGIN
RulesMatrix :integer[9]
i:integer <- 0
power:integer <- 2
sum:integer <- 0
j:integer <- 0
tempMatrix1:Matrix
tempMatrix2:Matrix
if (Rules <= 0 OR N < 1)
applyRules <- matrix;
endif
while(power <= 512) do
RulesMatrix[i] <- Rules%power - sum
sum <- Rules%power
if (RulesMatrix[i]!=0)
i++
endif
power <- power*2
endwhile
tempMatrix1 <- matrixFromRules(matrix, i, RulesMatrix)
for j from 0 to N do
tempMatrix2 <- matrixFromRules(tempMatrix1 ,i, RulesMatrix)
freeMatrix(tempMatrix1)
tempMatrix1 <- tempMatrix2
endfor
applyRules <- tempMatrix1
END
```
# Conclusion